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A QUALITATIVE ANALYSIS OF THE MOTION OF A HEAVY SOLID OF REVOLUTION 
ON AN ABSOLUTELY ROUGH PLANE* 

N.K. MOSHCHUK 

A strictly convex heavy solid of revolution, moving without slipping on 
a horizontal plane in a uniform gravitational field, is considered. 
Thanks to the existence of three first integrals (the explicit form of 
two of which is not known), the motion is amenable to qualitativeanalysis. 
The variation of the angle of nutation is studied and the motion of the 
point of contact on the surface of the body and on the supporting plane 
is analysed. It is shown that in phase space there are three-dimensional 
tori with conditionally-periodic motions. The problem of the motion of 
a body similar in shape and mass distribution to a dynamically and 
geometrically symmetric body is considered. Generalizations of KAM- 
theory to reversible systems are used to establish the conservation of 
the majority of invariant tori. 

The problem of the rolling ofaheavy body of revolution was first 
studied by Chaplygin /I./. The investigation was carried further in /2/. 
Up to now, fairly detailed attention has been devoted to the existence 
and stability of steady motions of a solid of revolution on an absolutely 
rough plane /3-S/. A qualitative analysis has been carried out f9/ of 
the motion without slipping of a heavy homogeneous tri-axial ellipsoid 
on a horizontal plane, on the assumption that it is similar to a sphere, 
and the periodic motions of the ellipsoid have been studied /lo/. 

1. Let Ogqc be a fixed coordinate system with origin at the point 0 on a horizontal 

plane O&h on which a body is moving (the m axis points vertically upward), and let Gxgz 
be a coordinate system fixed in the body. The origin of the body coordinate system is at its 
centre of gravity, and the axes lie along its principal central axes of inertia. The mutual 
orientation of the body and fixed coordinate systems is defined in terms of the Euler angles 
*‘ 8, tp. We also introduce a moving coordinate system Q&Q&, whose axes are parallel to the 
&a, f axes, respectively, and whose origin Q is the projection of the centre of gravity G 
onto the horizontal.plane. 

As coordinates defining the position of the body we take the Euler angles and the two 
coordinates t. q of the centre of gravity G in the coordinate system O{q& The third co- 
ordinate 5 - the height of the centre of gravity above the supporting plane - is a function 
of the angles 0, cp, given the shape of the surface bounding the body. 

To non-integrable constraints are imposed on the system: the horizontal component of the 
absolute velocity of the point P of the body coinciding with the point of contact is zero, 
and the entire mechanical system is a conservative non-holonomic system in Chaplygin's sense 

IV, with three degrees of freedom. Its dynamic equations (describing the rotation of the 
rigid body about its centre of gravity G) are separated and can be considered independently 
of the constraint equations. 

In canonical form these equations are 

il=aHjaP, d=- awaij +r, +-=e,Ip,cp), PT=(P~,P~~P~) .(i.i) 

The function H in (1.1) is the result of applying the Legendre transformation to the 
Lagrangian L, where the latter is assumed to incorporate the constraints on the body, p = 
amq* and r are the non-holonomicity terms. 

Eqs.il.11 define a reversible flow on T*M, where iW = SO(S) is the set of positions 
of the reduced system. They are fairly complicated to investigate and may involve effects 
not occurring in Hamiltonian systems. For example, in the general case, Eqs.cl.1) do not have 
an invariant measure /ll/. In addition, they admit of steady solutions, which may be 
asymptotically stable with respect to some of the variables /8/. 

We shall use the following notation: m is the mass of the body, g the acceleration due 
to gravity, and A, E and C the moments of inrertia of the body relative to the z, Y and z 
axes respectively. 
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2. Let us assume that the surface bounding the body is a surface of revolution about the 
z axis, and that the body is dynamically symmetric, i.e., A = R, 5 = f(8). We shall assume 
that f is a thrice continuously differentiable function of 0. Note that j(e) may be assumed 
to be an even, &c-periodic function of its argument, and moreover r(O)= f(e)+ f”(e)> 0. Here 
and below the prime will denote differentiation with respect to 0. Clearly, f’(O) = j’(n)-- 0. 

The function H will have the form 

(2.1) 

C&(e) = u c+mP - c cos El - mf’p 

-cc0se--77tf’p Asinze+Cc0s2e+mf’2 II 
o,(e)=[A _1- m(j2 + j’Z)]-l, A(e)= ACPsin2 8, 

Here 0 is a (3 X 3) symmetric matrix, the angular brackets denote the scalar product, 
p and x are the coordinates of the point of contact P in the coordinate system Gx,z, where 
the x1 axis lies in the plane of the vertical meridian of the body, perpendicular to thezaxis. 

The differential Eqs.(l.l) will have an invariant measure, defined by the density 6-'(e). 
We now write down the equations for pe and pc, using the abbreviated notation p*r = (pe, 

PI4 ): 

P *’ = e’s (e) sin BP*; S = 11 Sjk 11 (i, lz = 1, 2, 3) 
sn = e, (Ce, + mp2ff’), s12 = e, (Apj” sin28 2 Ce, cos 8 - 

Wff2) 
S21 = e, (Ce, + Ipt$f), s22 = e, (_4p sin 28 cos 8 - Ce, cos e - 

W"ff') 

(2.2) 

e, (e) = mA-l sin-r (e), e, (0) = jj' + j"x sin 0, e, (0) = pf + 

TX sin e cos e 

The elements of the matrix s are 2n-periodic, continuously differentiable even functions 
of 8. 

We now transform (2.2) to the new independent variable 8. This gives the following linear 
differential equations with periodic coefficients: 

p*' = S (e) sin ep* (2.3) 

which have the e-invariance property /12/. Let X(0) he the matriciant of system (2.3). It 
exists, and its elements are continuously differentiable functions of 8. Note that detX = 
6 (0)/s (O)>O (the Liouville-Jacobi formula). System (2.3) is invariant under rotations of 8, 
and therefore the spectrum of the monodromy matrix X (2n) is symmetric about the unit circle 
and the real axis. 

By the Floquet-Lyapunov theory, the matriciant of system (2.3) can be expressed as 

X (e) = F (13)exp (f3K) (2.4) 

where F(0) is a 2n-periodic (or antiperiodic) real continuously differentiable non-singular 
matrix and Kis a real constant_ matrix. Each element of the matrix exp (OK) is a linear 
combination either of cos a& sin ore, or of eaH , e+e, or at e,i. 

Note that if the body IS bounded by a spherical surface, i.e.,f(e) = r $ dcose(jd(<r; r, 
d = cold), then X (0) is a known 2n-periodic matrix /l/. Hence we have 

Proposition 1. System (1.1) in this case admits of two independent integrals P,,~z, 
which are linear functions of the momentape and po: 

P, = x-1 w P*. P,T = (P,, p2) (2.5) 

Thanks to the existence of three first integrals H, P,, P,, Eqs.(l.l) enable us to carry 
out a qualitative analysis of the motion. 

We transform Eqs.(l.l) from pi and pq to the new "momenta" P, and Pp. In terms of the 
new variables, the function H will be 

H, = v+,P~* + n (e, P,, p2) (2.6) 
n (e, ply Pz) = ';24-r (dl,P,* + d,,P,P, + d,,Pp') + wf 

Note that the equations for d and pe now become 
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0’ = aH,iape, pee =- azf,iae 

The generalized velocities *'and cp' and the new momenta P,,P, are related as follows: 

$’ = A-’ hp, + pzp,), cp’ = A-’ (psp, + pd’,) (2.7) 

Investigation of the motion now reduces to a consideration of a reduced Hamiltonian 
system with one degree of freedom with Hamiltonian H,, potential energy IJ and kinetic 
energy T = 1/201-‘9’“. Further analysis of the motion has much in common with the analysis 
in /13/ of the motion of a dynamically and geometrically synnnetric body on an absolutely 
smooth plane. We shall therefore confine ourselves to a brief statement of the main,results. 

The variation of the angle 0 = e(t) is found with the help of the energy integral T $ 
II = h = con&. Letting 8, denote the initial value of tl and disregarding motions for which 
e = eO, we obtain 

+ S 12~~ (h - np de = t 
8. 

In the set of levels of the first integrals H, = h, P, = cl. P, = C, , we define three 
subsets: 

z = (h = n (e, cl, 3, rr (e, Cl, CJ = O), 2, = {Cl - c* = 0) 
2, = {Cl h 64 + 121 (41 + 5 I% (4 + % HI= 01 

2 is the set of critical values of the integral transformation (bifurcation set), the con- 
dition cs (h, cl, ca) E 8, (c E 2,) is a necessary condition for the angle I3 to equal 0 (s) 
during the motion. 

It is clear that h-II 20. This inequality determines the region of possible motions 
of the reduced one-dimensional system. 

lo. Let ce Z,lJ Z,. Then the value of h- II(e,c,,c,) becomes negative if El--+ 0 or n. 

Consequently, the angle 0 lies between the two real roots of the equation h-II70 in the 
interval (0, n). If c@Z, then all roots of this equation are simple. Let e,(c) and 8, (c) 

be two different roots of the equation h-II = 0 and assume that h> II in the interval 
between them. Then the angle I3 oscillates between 8, and 8, and the period of the oscillations 
is 

7 = 2 ” 120, (h - np de S (2.8) 0, 
2O. Let eEZ,,ceZ,,c@X. Then the axis of symmetry may pass through the vertical 

position. The angle 8 will again oscillate between certain limits 8, and 8, with n >f&> 
e1 >- n. 

3'. Let c FEZ.,, c@G.Z,, c e Z. The axis of synanetry may pass through the position i3=n 
(flipping). The angle 0 will‘ oscillate between I!& and 82, with 2n>0,>8,> 0. 

4O. If cE,Z, n X,,c@Z, i.e., Cl = c, = 0, then as the body moves its axis of 
symmetry may pass through both singular positions e=o and 8 = a~. It follows from (2.7) 
that in this case 11, = lpO = const,cp= 'p,, = con&, i.e., the body moves in such a way that its 
axis of symmetry remains constantly in a fixed vertical plane of the moving coordinate system 

QS,nL- The possibilities for the motion are either oscillations (relative to the angle 8) 
or rotations. The constraint equations 

E' = -(f'*' + pm') cos+ + fe. sin 6 
q' = -((f'+' L p~~~')sin+ - fe* cm* 

imply that at this level of the fi,rst.integrals 

5 = fe* sin &, n' = -fe' cosI10 

Hence 

E 03s $0 + rl sin Ib, = const 

8. 

E = sin qO s” fde + Eo, q=-~o~~O~ fde t- 11~ 
e. 8. 

(2.9) 

(2.10) 

(2.11) 
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Consequently, the point Q either oscillates about the straight line (2.10) or goes to 
infinity along the line. Analogous arguments hold for the point P, except that f must be 
replaced by r in (2.9), (2.11). 

50. If c=Iz, this is a singular level of the first integrals and the possibilities are 
either motions with constant angle 0 (in these motions the integrals H, P,, P, are dependent) 
or motions asymptotic to the latter. Motions with 0 = 8, = const are either regular precession, 
rolling along a straight line or equilibrium positions. 

If e = e (t) is known, the variation of the angles IJ = q(t), 'p = q(t) is found from (2.7) 
by quadratures. At any non-singular level of the first integrals, e(t) is a periodic function 
of time (of period z). Let 

h, = 2nh (2.12) 

In time z the angles Q and 'p receive certain constant increments &and h,, and we have 

$ = J.*t + $* (G, 'p = hat + 'p* (t) 

The constants h,, h,, h3 (the frequencies of motion) depend on the constants of the first 
integrals, while the functions &(t),cp*(t) are periodic, with the same period z. 

Investigation of the curves traced out by the point of contact on the surface of the body 
and the moving plane Q&q1 is entirely analogous /13/. A significant departure from the 
case considered in /13/ appears when one studies the curve traced out by the point of contact 
on the supporting - fixed - plane. 

We shall investigate the motion of the point of contact on the supporting plane, following 

/14/. Let & and r)* denote the coordinates of the point of contact on the plane O&l. The 
kinematic relationships yield 

EP' = cres) sin II, - pp’ cos I/I. qp’ = -prp’ sin II, - re’ cos II, (2.13) 

Let <p = EP + inp. Then, by (2.131, 

5~’ = -_(prp’ + ire*) eiV (2.14) 

The function -(prp' + ire*) &(*) is z -periodic. Expanding it in Fourier series Xaneihlni, 
we infer from (2.14) that 

(2.15) 

where co is a constant. 
If nh, + h,#O for integer n, then cp = Go + ~(t)e'"b', where x(t) is a t-periodic 

function. Introducing a moving reference system rotating at angular velocity --h, about the 
point c,, we see that in the moving system the point &(t) will move periodically along a 
closed curve cp = x (t). Thus, in the fixed plane OEll the point of contact will move in a 
rather complicated way: it will move periodically along a certain curve, which in turn rotates 
like a rigid body about a fixed point, at constant angular velocity. 

However, if the resonance relationships nh, + h, = 0 hold, then the mean motion of Ep 
and qp maywellfailtovanish (thequestionoftheindependenceofthefrequencies will be con- 
sidered later), i.e., the body of revolution may go off to infinity. 

We will now discuss the behaviour of the trajectories of motion in the phase space T*M. 
If e@X, then any zonnected component of the level set of the first integrals is diffeo- 
morphic to a three-dimensional torus /15/. Indeed, this set is a compact oriented three- 
dimensional manifold. It admits of three pairwise commuting linearly independent tangent 
vector fields. The first is defined by the right-hand sides of Eqs.(l.l), and the coordinate 
curves corresponding to Q and 'p serve as integral curves for the other two fields. Hence it 
follows that this is a torus (or several tori). The trajectories of motion are straight lines 
winding uniformly around the tori. 

We now return to the equations of motion and briefly consider the question of whether 
they are Hamiltonian. In /16/ we showed how to construct coordinates 

x1 = 0, nB = * + Y (h, P,, P,, e), 5~s = 'p + @(h, pi, p,, e) 
(subsequently replacing h,P,,P, by appropriate expressions in terms of p,q) which, together 
with the momentum transformation (2.51, reduce Eqs.(l.l) to the form of ordinary 
Hamilton equations with Hamiltonian H. Here there is no invariant set of motions with constant 
angle tl on which I'rp=I'e =O,pe = 0 and the equations are now in Hamiltonian form with 
Hamiltonian H = H(pq, pe, 9, cp). Unfortunately, these coordinates cannot be used to construct 
a canonical atlas, i.e., to introduce canonical ooordinates globally. The reason for this 
situation is that the coordinates n, and na are not necessarily angular, since 

$Ydf~ # 0 (mod 2n), $ @iI #O (mod 2n) 

for almost all value of h, P,, P, (the integration is performed along curves H, = const) 
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Thus, we have the following. 

Proposition 2. The phase space T*M of the problem, or even any of its invariant sub- 
spaces (other than the manifold of motions with constant angle 8), cannot be given a symplectic 
structure in such a way that the equations of motion (1.1) assume a Hamiltonian form with 
Hamiltonian H. 

Proof. (by reductio ad absurdum). If this were possible, the variables x, P would be 
symplectic. However, one cannot construct a symplectic atlas with these coordinates. 

However, if we consider the problem of reducing the equations of motion to Hamiltonian 
form with some other Hamiltonian H,, there is a simple solution (the theorem on rectification 
of the phase flow). There exist coordinates wmod 2~5, I (see be.low) in terms of which the 
equations of motion have the form 

w' = h (I), I' = 0 (2.16) 

If 1 ah/d1 I #= 0, these equations are Hamiltonian, the Hamiltonian being 

H* = Al2 (I) + a,2 (I) f a,2 (I) 

Note that in the case of a dynamically and geometrically symmetric body Eqs.(l.l) do not 
admit of Chaplygin's reducing muliplier /l/. Indeed, if such a multiplier existed, it would 
be equal (apart from a constant factor) to the last Jacobi multiplier 6"' (e) and in the case 
of a uniform sphere it would be a constant. However, it is well-known that evenforauniform 
sphere I'+ 0 in Eqs.(l.lf. 

3. In the neiqhbourhood of the invariant tori of the problem, we introduce the variables 
wmod 2n,I (analoques of the action-angle variables in Hamiltonian mechanics), in terms of 
which the phase flow is rectified, i.e., the equations of motion have the form of (2.16). 

Put I, = P,, I, = P,. The variables wl, I, are defined as the usualaction-anglevariables 
for a one-dimensional Hamiltonian system (2.6): 

I, (H,, I,, I,) = (2~7~’ 9; sign pe [2 (Ho - n) ol-‘l”de 

wl = sign ptjhl 1 12 (H, - XI) wJ’~~ de, b, = Sf, (1)/81, 

(3.1) 

(3.2) 

The paths of integration in (3.1) are the iso-energetic curves H, = const in the 6, pe 
plane. 

Differentiating both sides of (3.1) with respect to H, and using the expresssion (2.8) 
for the period. of motion ‘5, we have 

LV,iaH, = 7/(2n) > 0 (3.3) 

Since dI,lNZ, > 0, Eq.(3.1) is solvable for H, and the formula for h, is well defined. 
The angular coordinates zue,ws are defined as follows /16/: 

wl = IL + W, (H,, I,, I,, ‘e), wQ = T i- ws vh. I,, f,, et (3.4) 

The functions W,, Ws are so chosen that wz' = hp, w; = aa. Differentiating (3.4) with 
respect to time, we obtain 

The asterisk in (3.5) and (3.6) means that the quantity in parentheses should be replaced 
by its expression in terms of H,, I,,Z9 

The frequencies &and a, are so chosen that the coordinates %t wa are angular, i.e., 

$ W,d@ = $ W,dt3 = 0 (3.7) 

Hence h, = Agfr, h, = A$r, where' b$ is the angle through which the line of nodes QE 
rotates about the point p in a time equal to the oscillation period of the angle 6,; Am is 
the angle through which the body rotates about its axis of symmetry in the same time T. Thus 
the frequencies hl,li,,& here are the same as in Sect.2. 

Clearly, the variables w (as well as n) are not uniquely defined (for example, one can 
add an arbitrary function of the variables He, I,, I,). 

The procedure used to introduce the variables w, I is essentially taken from 

Hamiltonian mechanics. As the problem is non-holonomic, we have h,#dH,i& h,# dH,ldI,. 

4. We will now investigate the non-degeneracy of the frequencies 1, in this problem. Put 
J = I6wcz~. In the case of an arbitrary dynamically and geometrically symmetric body, 
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verification of the condition J +o involves considerable technical difficulties, mainly 
because the matrix X(0) is not known. We shall verify the condition below for the case of a 
body bounded by a spherical surface. obviously, JPO in the most general case as well, 
except when f = r> 0. Then the motion has a single frequency (when A -C) or two 
frequencies (A #c). 

Proposition 3. Let f (8) T= r + d cos 0, A # C, d + 0. Then J +s 0. 

Proof /16/. 

Here ~1 = 2 (H, - mgr) I,-%* v = Z,18-1. We express z,Aq,Acp explicitly in terms of n,z,, v 

vu* = I, 10~ IU - zz,-2 ngd cam e - A-Z k-2 i3 (dlu2 + dzzJ + ds)p: 
($I’)* = I,& sin+ e (0 + xp), (cp’)* = z,.v I--(” + 

uxI) sin-2 f) cos e + cm,] 
XI = xr-1, a = [ss (o)l-‘, cc3 = AC-‘, & = I+ J&A-‘, 
4 = ZxmY, d8=6-* (O)(x,*+ar sina@ 

Investigation of the behaviour of z,A+, de as Z,-+m(v-t 0) /13/ shows that J+ 0,thus 
proving the proposition. 

We now consider the motion of a body similar in shape and mass distributiontoadynamically 
and geometrically symmetric body. Then 

5 = f (8) + sfr (8, cp), B = A (1 + s) (0 <e <( 1) 

In the unperturbed case (6 = 0) we obtain a conditionally periodic motion on three- 
dimensional tori. By generalizations of Kolmogorov's theorem /l&20/ to reversible systems 
(system (1.1) is reversible), the tori on which the frequencies are "sufficiently strongly 
incommensurate" do not disappear, but are only slightly shifted in phase space, the motion 
remaining conditionally periodic. These invariant tori form a set of positive measure. 
Consequently, for the majority of initial conditions the phase portrait in the 9,pe planewill 
differ only slightly from the phase portrait of the unperturbed problem. In particular, for 
the majority of initial conditions the range of variations of the angle of nutation changes 
only slightly, and the same is true of the nature and position of the curves traced out by the 
point of contact on the plane Q&n, and the surface bounding the body. 
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DIFFUSION SPREADING OF LOCALIZED HYDRODYNAMIC DISTURBANCES 
ACTION OF RANDOM FORCES* 

V.A. GORODTSOV 

The effect of a time-dependent random force on fluid flow may be 

UNDER THE 

found 
by changing to a non-inertial coordinate system. It is shown that, 
under the action of a Gaussian random force, initially localized dis- 
turbances undergo spreading of a diffusion type. Explicit analytic 
solutions are given for the interior wave soliton under the action of a 
random force. It is shown that, in the presence of a soliton, the growth 
of velocity pulsing may either increase or moderate. 

1. The evolution of a wide class of one-dimensional disturbances of the velocity field 
of the flow u(z,t) in hydrodynamics is described by the general non-linear equation /l/ 

When there are no external force (f = 0) the Cauchy problem for the homogeneous equation 
can sometimes be solved by means of reduction to a linear problem, and as a result of the 
balance of non-linearity, dispersion, and dissipation, the existence of selfpreserving non- 
linear fields (solitons and shock waves) is possible. In particular, when F (2) = -@ (r), 
we obtain Burgers' equation, which, under the Hopf-Cole replacement, reduces to the linear 
equation of diffusion. For 

F(z)--@(r), P$ qctgg - sgnz) 

the equations are respectively, completely integrable Korteweg- de Vries equations, Benjamin- 
On0 equations, and the equations of the interior waves in a basin of finite depth (the symbol 
P indicates that the singular integrals are to be taken in the sense of the principal value). 
The reducibility to a linear problem in these cases is also well-known /2/. 

With regard to the non-uniform Eq.(l.l), by using the equivalence of the action of the 
spatially homogeneous force f(t) and of a suitable acceleration of the coordinate system, the 
soltuion of (1.1) for u(2.t) can be reduced by the change of variables 

l Prikl.Matem.Mekhan.,52,2,211-217,1988 


